2016年1月26日 星期二

[UVa 11895]Honorary Tickets

We can use priority_queue to maintain the current best choice
A state contains following information:
1. The expect value of number of lucky tickets (I use a pair of long long, $(u,d)$, to represent a fraction)
2. The total number of envelops (called $c$ later)

The possibility of getting from a bag is $\frac{\frac{u}{d}}{c}$, i.e. $\frac{u}{dc}$

Total time complexity: $O(K\log N)$

code:
#include<cstdio>
#include<vector>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long LL;
LL Gcd(const LL &a,const LL &b){return b==0LL?a:Gcd(b,a%b);}
struct Bag
{
    LL up,down,cnt;
    Bag(){}
    Bag(const LL &_up,const LL &_down,const LL &_cnt):up(_up),down(_down),cnt(_cnt){}
    bool operator<(const Bag &a)const{return (double)up*a.down*a.cnt<(double)a.up*down*cnt;}
};
int N,K;
int main()
{
    int testcount;scanf("%d",&testcount);
    while(testcount--)
    {
        scanf("%d%d",&N,&K);
        priority_queue<Bag>pq;
        for(int i=0;i<N;i++)
        {
            static Bag b;
            scanf("%lld%lld",&b.cnt,&b.up);
            b.down=1LL;
            pq.push(b);
        }
        for(int i=1;i<K;i++)
        {
            const Bag b=pq.top();pq.pop();
//            printf("%lld/%lld %lld\n",b.up,b.down,b.cnt);
            //b.f-=b.f/b.cnt
            //(b.up*b.cnt)/(b.down*b.cnt)-b.up/(b.down*b.cnt)
            const LL up=b.up*(b.cnt-1LL),down=b.down*b.cnt,g=Gcd(up,down);
            pq.push(Bag(up/g,down/g,b.cnt));
        }
        const Bag b=pq.top();
        const LL up=b.up,down=b.down*b.cnt,g=Gcd(up,down);
        printf("%lld/%lld\n",up/g,down/g);
    }
    return 0;
}

沒有留言:

張貼留言

歡迎留言或問問題~
若您的留言中包含程式碼,請參考這篇
如果留言不見了請別慌,那是因為被google誤判成垃圾留言,小莫會盡快將其手動還原

注意:只有此網誌的成員可以留言。